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We show how to write the Dirac and the generalized Maxwell equations (includ- 
ing monopoles) in the Clifford and spin-Clifford bundles (of differential forms) 
over space-time (either of signature p = 1, q = 3 or p = 3, q = 1). In our approach 
Dirac and Maxwell fields are represented by objects of the same mathematical 
nature and the Dirac and Maxwell equations can then be directly compared. 
We show also that all presentations of the Maxwell equations in (matrix) 
Dirac-like "spinor" form appearing in the literature can be obtained by choosing 
particular global idempotents in the bundles referred to above. We investigate 
also the transformation laws under the action of the Lorentz group of Dirac and 
Maxwell fields (defined as algebraic spinor sections of the Clifford or spin- 
Clifford bundles), clearing up several misunderstandings and misconceptions 
found in the literature. Among the many new results, we exhibit a factorization 
of the Maxwell field into two-component spinor fields (Weyl spinors), which is 
important. 

1. I N T R O D U C T I O N  

T h e r e  a re  seve ra l  p r e s e n t a t i o n s  o f  the  M a x w e l l  e q u a t i o n s  in ( m a t r i x )  

D i r a c - l i k e  " s p i n o r "  f o r m  in t he  l i t e ra ture .  T h e  m o t i v a t i o n s  fo r  t he se  pres-  

e n t a t i o n s  are :  (i) to g ive  a q u a n t u m  m e c h a n i c a l  (first q u a n t i z a t i o n )  i n t e r p r e -  

t a t i o n  to  t he  M a x w e l l  f ie ld;  a n d  (ii) t he  b e l i e f  2 tha t  sp ino r s  a re  m o r e  

f u n d a m e n t a l  ob j ec t s  t h a n  t ensors .  H o w e v e r ,  t he se  p r e s e n t a t i o n s ,  a l t h o u g h  

v e r y  i n g e n i o u s ,  a re  o f  an  a d  hoc  n a t u r e  a n d  do  n o t  l e ave  c lear ,  a m o n g  o t h e r  

i ssues ,  w h i c h  is the  t r a n s f o r m a t i o n  l aw  o f  t he  s p i n o r  r e p r e s e n t i n g  the  

M a x w e l l  f ie ld  u n d e r  t h e  a c t i o n  o f  the  L o r e n t z  g r o u p .  

~Departamento de Matemfitica Aplicada, Instituto de Matemfitica, Estatistica e Ci~ncia da 
Computa~io, Universidade Estadual de Campinas-UNICAMP, 13081 (Campinas) Silo Paulo, 
Brazil. 

2Wrong, according to the point of view of this paper. See also Figueiredo et al. (1990) and 
Rodrigues and Figueiredo (1990). 
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The importance of representing the electromagnetic field and the matter 
field as objects of the same mathematical nature is obviously an important 
step for any tentative construction of a unified theory. 

One of  the purposes of the present paper is to clarify that despite the 
fact that both fields can be represented as objects of the same mathematical 
nature, they satisfy distinct field equations even if these can look formally 
identical in some particular representations. This point, in particular, is at 
variance with the claim of Sallh6fer (1986), who proposes that both fields 
should be identified. 

To attain our objective, we show in Section 2 how to write the usual 
Dirac equation written for a covariant Dirac spinor field as an equation for 
an algebraic Dirac spinor field 3 in the Clifford and spin-Clifford bundles 
of differential forms over space-time. This implies in the use of R1,3 the 
space-time and in R3,~ the Majorana algebras (Figueiredo et  al.,. 1990). We 
do not use here R4,1m-C(4), the Dirac algebra. The definitions and the 
properties of  these bundles necessary for the present paper are reviewed in 
Section 4 (see also Rodrigues and Figueiredo, 1989). 

In what follows ~ denotes a Minkowski space of signature p = 1, q = 3, 
i.e., a triple (d/, g, V), where d/ is a 4-dimensional manifold, connected, 
noncompact,  time-oriented, and space-time-oriented, g is the Lorentz 
metric, and V is the Levi-Civita connection of g in d/ (Rodrigues and 
Faria-Rosa, 1989). ~ denotes a Minkowski space of signature p = 3, q = 1. 
(The case of the formulation of the Dirac and Maxwell equations within 
the Clifford and spin-Clifford bundle formalism in a general Lorentzian 
manifold is presented in a separate paper.) 

We denote the respective Clifford and spin-Clifford bundles corre- 
sponding to ~ (c2) by cCE(~f) [cr162 and ScCE (~ )  [SCr162 

Among our results, we show that the Dirac field originally interpreted 
as an algebraic spinor section of cr162 [or SCCC(c~)] obeys a differential 
equation where the global idempotent field (defining the ideal section of 
the bundle to where the Dirac field leaves) factors out. 

We then obtain an equation for a Clifford field that is a sum of  a 0-form 
plus 2- plus 4-form fields. It is quite interesting that this object is analogous 
to the generalized electromagnetic field describing charges and (nontopo- 
logical) monopoles as obtained in (Faria-Rosa and Rodrigues, 1989; Faria- 
Rosa et  al.,  1986; Rodrigues et  al., 1988, 1989a, b). 

In Section 3 we show how to write the Maxwell equations [even for 
the case containing (nontopological) magnetic monopoles] in the Clifford 
and spin-Clifford bundles, where the electromagnetic field is represented 
as an algebraic Dirac spinor field. Then we show that all presentations of 

3The precise definitions of these concepts can be found in Figueiredo et al. (1990) and Rodrigues 
and Figueiredo (1989, 1990). 
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the Maxwell equations in (matrix) Dirac-like form in the literature can be 
obtained by particular choices of the global idempotent in the Clifford or 
spin-Clifford bundles. 

A particular choice of the global idempotent [that is simultaneously a 
local idempotent of both R~,3 and R~.o--the Pauli algebra (Rodrigues et al., 
1989a)] permits us to write the Maxwell equations as two equations satisfied 
by Weyl spinor fields. We can show that in this formulation new invariants 
of the Maxwell field show up. The importance of this result will be discussed 
in a separate paper. 

In Section 4 we discuss the transformation laws of the Dirac algebraic 
spinor fields and the Maxwell algebraic spinor field both in cr and 
SC&r clearing up several misconceptions in the literature. 

Finally in Section 5 we present our conclusions. 

2. T HE  D I R A C  E Q U A T I O N  IN ~t( .T)  AND S~I( .T)  

In the usual presentation of the Dirac equation, the (standard) covariant 
Dirac spinor field (Landau and Lifschitz, 1971; Bleecker, 1971) is assumed 
to be a section ~(x)  = (x, ~(x)) of the covariant spinor bundle S(~)  = 
Pspin+(i,3)(~.~) >(fi V, where Pspin+(1,3)(~ff) is the covariant spinor structure 
bundle (Bleecker, 1971) and ~: Spin+(1, 3) --> GL(V)  is the D(~/2"~ D (~ 
representation of SL(2, C)-----Spin+(1, 3), the universal covering group of 
SO+(1, 3), the homogeneous Lorentz group, and V= C 4, a 4-dimensional 
complex vector space. The standard Dirac covariant spinors are elements 
of C 4 constructed in the following way: 

(1) 

1 ~ 1 =~(~+#); a = ~  (~-,~) 

where ~:~C 2 (a 2-dimensional complex vector space) are the so-called 
A A 

undotted two-component Weyl spinors and ,j~(~2, where (~2 is also a 
2-dimensional complex vector space) and is the algebraic dual of dotted 
two-component Weyl spinor relative to the spinorial metric (Figueiredo et 
al., 1990). 

The Dirac matrices %, ~ C(4),/x = 0, 1, 2, 3, act as linear operators in 
C a and have the representation 

[; ] [ : ]  . . . .  ~t0 = --920 ," "~/k = (Tk0 k ," "Y5 = '~0~/1'~2V3 = il]2 

~/~/~ + ~,~/, = 2~7~, ; ~7~ = d i a g ( + l , - 1 , - 1 , - 1 )  (3) 



400 Rodrigues and de Oliveira 

and ~r;, i = 1, 2, 3, are the Pauli matrices and 92 is the 2-dimensional unit 
matrix. 

The coupling of the standard Dirac covariant spinor field and the 
electromagnetic field represented by the vector potential A, a section of the 
cotangent bundle T*~,  is then given by 

iql~(O~ - qA.(x)) ( t (x)  = m6(x  ) (4) 

where the pair (q, m) represents, respectively, the charge and the mass of  
the  Dirac field. 

Let R 1'3 be a Minkowski vector space (Rodrigues and Faria-Rosa, 1989) 
(not to be cofounded) with 5r E~,, ~ = 0, 1, 2, 3, the canonical basis and g 
the Lorentz metric in ~1,3, such that g(E . ,  Ev)= ~%~. The real Clifford 
algebra RI,3 (nowhere called the space-time algebra) (Figueiredo et al., 
1990; Rodrigues et al., 1989a) is generated by the E~. Taking R 1"3 canonically 
imbedded in RI.3, we have 

E.Ev+E~E.  = 2g(E. ,  E~)=2~ .v  (5) 

analogous to equation (3). Let R § 1,3 = R3,0 (the Pauli algebra) be the even 
subalgebra of R1,3. Now, /~ --�89 + Eo) is a primitive idempotent of R1,3.4 
As for any x ~ R1,3 there exists y ~ ~,3 such that x/~ = y/~, it follows that 

= R~,3/~ is a minimal left ideal of R1,3. 
Every ~ E i can be written in the form 

=/~b ,  § E 3 E, E02 § E3/~qJ3 + E1/~/4 (6) 

where 0, ~/~R1,3/~ = C with basis {1, E2E1}/~, and & = {/~, E3EIE, E3E, E ,E}  
is a complex spinorial basis for [. 

The ~ (as the notation anticipates) are representatives of the standard 
Dirac covariant spinors introduced through (1) and will be called standard 
algebraic Dirac spinors (or algebraic spinors, for short, when no confusion 
arises). This can be seen once we consider the isomorphism 

'Y" ~1,3 -'> '~C( i ) 

p-"  "~(p): i--> I (7) 

In (7), ~c(/~) is the space of linear transformations of  i (over the 
complex field). The isomorphism ~ gives, through a technique introduced 

4For details of the notation see Figueiredo et al. (1990), Rodrigues and Figueiredo (1990), 
and Rodrigues et  al. (1989a). 
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in Figueiredo et al. (1990), for ~ ( E . ) = ~ / . ,  /.~ =0,  1,2,3, and 3~(E5) =~/s 
exactly the set of Dirac matrices exhibited in (2). We also have 

(oo )o o 
~ ( ~ ) =  o o 

0 0 

(8) 

Putting ~(&) = {11), 12), 13), 14); 1i) ~ c(4)3,(/~), i = 1, 2, 3, 4}, we obtain 
the validity of the following identities: 

I 1) = g/olD; i[1) = "~2~,11); 12) = -%~211) 
(9) 

13) = 'y311); 14) = ~11) 

Given this local structure, we can now map the Dirac equation written 
for the standard Dirac covariant spinor, i.e., equation (4) in the Clifford 
bundle of differential forms qgg(Sg), once we take into account one more 
result of purely mathematical character. As ~g (~ )  is the quotient of the 
tensor bundle by an appropriate ideal, then the Levi-Civita connection 
passes to the quotient and can be used in <r (Graf, 1978; Blaine Lawson 
and Michelsohn, 1983). Let now {e, , /z  = 0, 1, 2, 3} be a global tetrad field, 
i.e., a section of a flame bundle. Let {y",/z = 0, 1, 2, 3} be a section of the 
coframe bundle s dual to {e,}, i.e., y"(e~) = 6~. In the Clifford bundle ~ t ' (~)  
of differential forms we give the structure of a Clifford algebra to each 
T * ~ = R  1'3. In ~ e ( ~ )  we have the global idempotent field ~=�89 ~,o) of 
global minimum rank 8 (Rodrigues and Figueiredo, 1989) and the algebraic 
spinor field �9 = (x, q~(x)) corresponding to the standard covariant Dirac 
spinor field is defined as a section of cCt'(Sg) such that ~ =  ~. Putting 
a = y"a~ (the Dirac operator), we can show that (Rodrigues et al., 1989a) 

a = d - ~  (10) 

where d is the differential and 6 is the Hodge codifferential. Using this last 
result plus equations (6) and (9), the Dirac equation in cCg(~) results, 

[a ~r ~2~1 _ qA(x) ~r ~o~ = m~C(x) ~ (11) 

where CO(x) e sec A~ A4T*~, i.e., locally :r is an element 
of ~1+,3 and ~(x) -- ~(x)g .  Also, A ( x )  = 3 ,~A,(x) .  

We observe that in equation (11), i = x/-:l has been eliminated! This 
point is very important. It shows that---contrary to the approach by Graf  
(1978), who uses the K~ihler equation in ~t~(~)--here there is no need for 

5Note that the basis vectors of  the coframe bundle are represented by Greek letters 3, ~ without 
boldface. Boldface characters are reserved for Dirac g a m m a  matrices. 
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the complexification of cr by U(1)-gauging. 6 Observe also that in (11) 
the global idempotent field can be "factored" out, thus resulting in an 
equation for Cr Hestenes (1967, 1971a, b, 1975, 1986) calls this object 
an "operator spinor," but it is clear from the detailed analysis in Figueiredo 
et al. (1990) and Rodrigues and Figueiredo (1990) that this object is not 
an algebraic spinor field. ~r is incidentally an object of the same mathe- 
matical nature as the generalized electromagnetic field generated by charges 
and (nontopological) monopoles (Rodrigues et al., 1989; Faria-Rosa and 
Rodrigues, 1989). It is also important to observe that the equation satisfied 
by Cr is different from the K/ihler equation (Graf, 1978), which does not 
contain the term y2yl. 

The elimination of ~ gives rise to a geometrical and realistic interpre- 
tation of the Dirac equation, as discussed in Hestenes (1967, 1971a, b, 1975, 
1985) and Gu6ret (1989). It is important here to emphasize that the derivation 
of (11) in Hestenes (1967, 1971a, b, 1975) is ad hoc. The reason is that 
R1, 3 ~ ~"~(2), where H is the quaternion field, and so the elements of minimal 
left ideals (R1,3/~) cannot be directly identified with the standard Dirac 
covariant spinors. This can be done only using the complex spinorial basis 
as above. 

Now, E =�89 + EaEo) is also a primitive idempotent of R1,3 (and also 
a primitive idempotent of R 1+3 = ~3,o) .  The minimal ideal I = ~1,3 E is such 
that its elements represent Dirac covariant spinors where the representation 
space V in the definition of the covariant spinor bundle S (~)  has the 

A 

structure V= C20(~ (Figueiredo et al., 1990; Bleecker, 1971). The complex 
spinorial basis in this case is a = (FOE, EIE, E, EoEIE), and we have 

I ~ d) = EoEd)~ + ElECt2+ E~b3+ EoEIEdp4 (12) 

with ~bi ~ ER1.3E = C with basis (1, Es}E. Considering the injection 

y: R1,3-~ Lec(I) 

p-~ y(p): I ~ I  (13) 

~b -~p~b 

we get the following representation for E and E. ,  /z =0, 1, 2, 3, in the 
a-basis (which we will need in Section 3): 

(o)  (?~ 0 i y ( E s )  = ~t5 = 
y ( E i )  = ~ i  = - o ' i  , i~2 

(14) 

6In the complexification of cr the typical fiber becomes R4, t = C(4), the Dirac algebra. 
The even subalgebra of  R4,~ is denoted R~,l = RI,a. 
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Consider now $ ~ sec cr such that Se = $ with e = �89 + 3~33~ ~ a 
global primitive idempotent field of minimal rank 8. Multiplying both 
members of (11) by e, we get the Dirac equation in the form 

cgCb~,5-qAga=mcb; ~b = ~be E sec ~E(~) (15) 

which appears originally in Hestenes (1967, 1971a, b, 1975). 

Dirac Equation in ~ l (  ~ )  and in S~E( ~ )  

As ~ has the signature p = 3, q = 1, the associated Clifford algebra is 
R3,1 - R(4), the Majorana algebra, generated by/~ , , /~  -- 0, 1, 2, 3, satisfying 
/ 7 ~ , / ~ + E ~ E , = - 2 ~ , ~ .  Now, /7=l (1+EaEo)  is idempotent, but not a 
minimal one. We can show that Dirac covariant spinors are represented by 
the elements of the ideal f = ~3,1 E, and have the structure 

_ A 

I ~ ~b = ~ + EoX' (16) 

A 

where ~ is a representative of Weyl's undotted spinors and )~ is a Weyl 
dotted spinor in ~3,1 (Figueiredo et al., 1990). The representation of Dirac's 
equation in ~E(~)  can now be obtained in an analogous way as done 
above, but we are not going to develop it here, since we do not need the 
result for what follows. 

What is important is to conclude this section with the remark that the 
form of the Dirac equation in S~E(~)  is identical to equation (11) [or 
equation (15)] with ~ or 4~ as appropriate sections of S~C(~). This can 
be seen at once if we keep in mind the close relation between the two 
bundles (see Appendix) when Af is a manifold that admits a spinor structure, 
as in our case. However, the transformation laws for ~ = ~b~ s sec ~E(~) 
and ~/, = ~b~ ~ sec S~e(SE) are quite different, as we show in Section 4. 

3. MAXWELL EQUATIONS IN (a/(~ ')  

Let Je, F, and Jm, respectively, be a 1-form, a 2-form, and a 1-form 
field defined on ~ [i.e., sections of the Hodge bundle canonically imbedded 
in ~E(~) (Rodrigues et al., 1989). Je is the electric charge current, Jm is 
the (nontopological) magnetic charge current, and F is the generalized 
electromagnetic field generated by charges and monopoles. With these 
definitions we easily show that the generalized Maxwell equations can be 
written as (Rodrigues et al., 1989) 

dF = -•Jm "~ 8F = -Je (17) 
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where -k is the Hodge star operator. Now using equation (10) and taking 
into account that Vfp ~ sec  A P ( T * ~ )  c s ec  ~ff(~q~), one has (Rodrigues et al., 
1989). 

* L  = ( - ) '~% 

where t = 1 for p = 1, 2, 3 and t = 2 for p = O, 4, we can write the difference 
of  equations in (17) as 

OF = Je + YsJ, n = J (18) 

Now, if e is a generic global idempotent field in ~C(~),  we obtain after 
multiplication of both members of (18) by e, 

00 = X; ~b = Fe  X = Je  (19) 

with ~be=4,, x e = x c s e c  ~g(~) .  Equations (19) represent a "Maxwell 
equation" written in algebraic spinor form. 

Taking, e.g., e =  e, we can now directly compare equations (15) (for 
the free-field case) and (19) and we see immediately that they are quite 
different. 

Maxwel l  Equations in (Matr ix)  Dirac Covariant Spinor Form 

In order to obtain the Maxwell equations (with Jm = 0) in the (matrix) 
covariant "spinor" form as found in the literature, all we have to do is to 
choose appropriate global idempotent fields in qg/(~). 

(i) For e =  e =�89 + y3yo), we get (the sign "---" denotes isomorphic) 

Putting now 

~b = Fe~-- 

_ -- E 3 + iB 3 

E1 - iE2 + i B l -  B2 

0 

0 

0 
x=Je~- Jo+J3 0 

V , + i J 2  0 

~176 : 1 
0 0 
0 0 E I - i E 2 + i B I + B  (20) 

0 0 - E 3 - i B 3  ] 

0 -J~ + iJ2~ 

000 J o i J 3  )1 (21) 

_ E 3 + iB 3 ) " 
~1= _ E 1 _ i B 2 + i B I _ B 2  ' 

( E l  - iE2 + iB1+ B2~ . 

~2, : \ - g 3 -  iB3 ,1' 

( Jo+J3]  
~1 = ~J1 + i J21 ] 

( - J ,  + iJ2~ 
~2=\ Jo+Y3 / 

(22) 
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the equation OFe = Je decouples [under the mapping y defined in (7)] in 
this matrix representation into two equations for the Weyl spinors 
(Rodriguez et al., 1989) of (22), namely 

o-~'0~Ao~ = ~ (a = 1, 2) (23) 

Equation (23) was first obtained by Sachs (1982) in an ad hoe way starting 
from a noncovariant equation. Here all the formalism is intrinsically 
covariant and the presentation of (23) is obtained in a legitimate way. 
Equation (23) is important for exhibiting new invariants of the Maxwell 
fields which have very important physical consequences. We treat this point 
in another paper. 

(ii) For e= ~=�89176 we get 

0 = F~ = I iB1 - iB2 - iB3  0 

lE E3 E ~ -  iE2 0 

1 + iE2 - E  3 0 

~=jO~_ Jo 0 

J l -  iJ2 0 

\ J l  + i J2 -J3 0 

(24) 

(25) 

We then have that each one of the nonnull columns of O satisfies a (matrix) 
Dirac-like equation. In particular, taking into account that the Maxwell 
equations are invariant under the substitutions B ~ E, E ~-,-B and consider- 
ing a medium with dielectric constant e and magnetic permeability/z, and 
with the substitution B ~ H in (24), putting c for the light velocity, we get 
that the free electromagnetic field satisfies 

which is the equation originally obtained by Sallh6fer (1986) in an ad hoc 
way. 

We are not going to discuss the physical interpretation proposed by 
Sallh6fer for equation (26). We simply say that the Maxwell and Dirac 
equations are indeed different when the comparison is done in the right 
way as above. 

( iii) The Maxwel l  Field as an Algebraic Majorana Spinor. We already 
considered ~r in Section 2, where we showed that the Dirac field in 
C l ( ~ )  is represented by the elements of a nonminimal ideal section. Now, 
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Majorana spinors are the elements of the minimal 
1(1 -/~1)(1 -/~o/~3). Considering the isomorphism 

p'-> ~(p): 

R3,~/~, where /~= 

(27) 

gives, through a technique introduced in Figueiredo et al. (1990) the follow- 

(28) 

ing representation for ~?(E,,)= ~ :  

[o ] [ : ]  ~o = 0 ~1 0 

i0-2 ' 0- 3 

which is the set of Majorana matrices used by Srivastrava (1985) in his 
presentation of supersymmetry. 

Let { ~ , / z = 0 ,  1,2,3} be a global tetrad field with ~ , ~ + ~ ,  = 
-2~7~,~ and {~/ ' , /2=0,1 ,2 ,3}  the associated coframe field. Then ~= 
�88 - ~1)(1 - ~o ~3) is a global idempotent field of minimum rank 4. The cross 
section q~ = r is said to be an algebraic Majorana spinor field. The Maxwell 
equations (with the obvious change due to the metric of c~) are now 0~ = )?, 

= F~, X = Je- In the spinorial basis generated by (28) we have 

(29) 

E3 

= 6'1 + B 2 

E 2 - B 1 

B~ 

- 

2 =  J3 

\ J2 

~176 0 0 

0 0 

0 0 

0 0 

0 0 
0 0 

4. T R A N S F O R M A T I O N  LAWS OF DIRAC A N D  MAXWELL 
FIELDS AS ALGEBRAIC SPINOR FIELDS 

It is a well-known result that the minimal left ideals of lpq = Rpqepq 
[where epq is a minimal idempotent of Rp, q, the real Clifford algebra associ- 
ated with the vector space R p'q of signature (p, q)], are representation 
modules of Rp, q. 
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We now discuss the problem of equivalence of  these representations. 
To this end, remembering that Rp, q is not just an algebra, but an algebraic 
structure consisting of  an algebra together with a distinguished subspace 

1 ~ R p ,  q Rp, q -- and that the representation spaces I,q are certain subalgebras of  
Rp, q, we have the following theorems (Rodrigues et al., 1989a; Bleecker, 
1971; Porteous, 1981). 

Theorem of  Noether-Skolen. When ~p,q is simple, its automorphism is 
given its inner automorphism m~-~umu -1, m c Rp, q, and u = F(p, q), the 
Clifford group. 7 

Theorem. When Rp, q is simple, all its finite-dimensional irreducible 
representations are equivalent under inner automorphisms. 

In view of  the above theorems we define that two representations Ipq 
and Ipq a r e  equivalent if lpq = UIpqU -1 for some u ~ F(p, q). 

Now taking into account the definition of the group Spin§ q), we 
see that the ideals Ipq can be made into spinorial representation of  SO§ q) 
(in the sense o f  group theory) by postulating Ipq ~ Ulpq for u ~ Spin+(p, q). 
This is exactly the idea behind the introduction of the spinorial metric 
introduced in Figueiredo et ai. (1990). 

The transformation ~b ~-~ ur r ~ Ipq corresponds to the usual transfor- 
mations of  covariant spinors (Figueiredo et al., 1990; Landau and Lifschitz, 
1971), but the use of  this transformation in a field formalism involving 
different Clifford fields beside algebraic spinor fields would contradict (if 
care is not taken) the fact that locally these spinors are elements of  Ipq, 
which is a substructure of  Rp, q. This is why we need to consider two different 
bundles c~E(S~) and Sqg~(~). This will be discussed further below. Before 
we do that, let us observe that when Rp, q is semisimple and epq is a primitive 
idempotent,  then ~p, qepq~pq is a bilateral ideal and since lepql = epq ~ 0 it 
follows that ~p, qepq~p,q = ~p,q. We can then write 

Rp, q = ( Ipq)(* Ipq) (30) 

~q =Rp, q#q, *~q = #qRpo 

The meaning of (29) is then that V X  ~ Rpq can be written as sums of 
elements of  the tensor product  of  the spinor spaces Ip0 and *Ipq, i.e., any 
X e Rp, q can be considered as a rank-two spinor. This decomposition of  
antisymmetric tensors is the one generally presented in textbooks on theo- 
retical physics and group theory and which gave birth to the belief that 
spinors are more fundamental than tensors (Frescura and Hiley, 1980; 

7F(p, q)  = { u [ u u  -1 = u - l u  = 1 and A d ~ ( R  " q )  = R e'q, A d ~ x  = u x u  - l ,  x ~ R p'q } 
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Penrose and Rindler, 1984). However, as is by now well known (Figueiredo 
et al., 1990), YX ~ Rp, q can be written as 

X = ~1 + ~b2+" �9 ' + ~bn (31) 

n 
where Oi ~ I~q, I~q = epq,, Y.,=l epq,, = 1. 

From equation (31) it is clear that algebraic spinors can be written as 
sums of  antisymmetric tensors, as we know from the examples in Sections 
2 and 3. 

Now let {epq, i" , i = l , . . . , n }  and {epq, i, , / = l , . . . , n }  be two sets of 
n tl primitive idempotents, Y,i=l epq.i =~,=1 epq, i '= 1 and epq,~,= uepqu -1, u 

F(p, q). Given X ~ Rp, q, we have 

X =  ~ Xepq,~= ~ Xepqi , ,=01+..  " + ~ , = C + ' "  "+0~ (32) 
i = 1  i ' = 1  

~I = uO~u -1 (33) 

On the other hand, if a given X ~ Rp, q can be written as 

X = ~ b *  ~; O~Ipq,*q~*Ipq (34) 

we can write 

c t  

= ~, ~ (u -1 evq,U)(u-le'pqU)*~oot 
o t  

= ~ --1 t t --1 t * t . (u O.epq)UU (epq ~ c t U ) ,  Otot ~_ U t p a U - 1 ,  * ( ~ t  = U * ~ o t U - 1  
o t  

U--1 ~ ! I --1 t * ! (~epq)UU (epq ~ ) u  (35) 
o t  

In this case the factor uu -1 can be eliminated or retained without 
affecting the result for the decomposition of X into two distinct sums of 
products of  spinors belonging to different ideals. Then, from the usual 
decomposition of  an antisymmetric tensor as the tensor product of  spinors, 
we see that the transformation law of  spinors can be chosen either as 

~ ~' = uO (36a) 

o r  

i~ ~--) I~tlt = Ul]tU - 1  (36b) 

Equation (36b) results from the "sum decomposit ion" of X into spinors. 
Observe that if 0 ~ Ipq, then u0 ~ Ipq, but uqm -1 ~ Ipq in general. 
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In physical theories which use covariant spinor fields defined as sections 
of  the covariant spinor bundle S ( ~ )  the observables are usually associated 
with bilinear functions of  spinors (i.e., the observables are tensors) and the 
choice of  transformation (36a) or (36b) is irrelevant. Whereas Aharonov 
and Susskind (1967) say that the transformation (34a) can be directly 
observed, their arguments are not very strong, mainly due to the prejudice 
that spinors are more fundamental than tensors. We come back to this point 
into another paper. 

We can finally discuss the transformation laws of the Dirac and Maxwell 
fields considered as algebraic spinor fields, and the covafiance of Dirac and 
Maxwell equations for these fields. As we saw in Sections 2 and 3, algebraic 
spinor fields can be thought of as sections gte = tb of  qgE(~) or S<gE(Lf). 
Now, the structure of  these bundles is as follows. 

(A) The (real) spin-Clifford bundle is the bundle (Rodrigues and 
Figueiredo, 1990; Blaine Lawson and Michelsohn, 1983) 

S(~(~'~) ~--- Pspln+(1,3) Xl ~1,3 (37) 

As R1,3 can be considered as a module over itself, the action of  
Spin+(1, 3) is the usual left action, here done by left multiplication. Scg#(LP) 
is a "principal R1,3 bundle,"  i.e., it admits a free action of R1+3 on the right. 
There is a natural embedding Pspin+(1,3)(~)c S ~ ( ~ )  which comes from 
the embedding Spin+(p, q) = {u c R~.q[ u*u = 1} for p + q -< 5. 

Hence, every real spinor bundle for &e can be captured from this one. 
(B) The Clifford bundle is the bundle (Rodrigues and Figueiredo, 

1990; Graf, 1978; Blaine Lawson and Michelsohn, 1983) 

~ff (~)  "~" /~SO+(1,3) Xpc R1,3 (38) 

where 

pc: S O + ( 1 , 3 ) ~  Aut(R~,3) 

Now, if we remember that there exists the representation 

A d :  Spin+(1, 3)--> Aut(R1,3) 
given by A d . X  = u X u  -1 for u c Spin§ 3) and X ~ R1,3 so that Ad_l  = Id = 
1, we see that this representation reduces to a representation of SO+(1, 3) 
that is exactly Pc- Then, if the manifold ~ admits a spin structure (which 
is the case in the present paper), we can also write 

qgi( ~ )  = Psp,n+( ,,3)( S~) Xad ~1,3 (38') 

This shows the difference between Sqg[(~) and <gE(S~). 
The result for the transformation law of  the Dirac and Maxwell fields 

interpreted as algebraic spinors, i.e., as sections of Srg[(L a) or rgC(~), is 
now clear. 
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When e is a global idempotent field of SCs p) the transformation law 
of Oe = ~O is as follows. 

--1 Let 4)~: ~'s~e(U,~)-~ Uc~X~I, 3 and 4)o: ~rs~e(Uo)~ U/3X~l,3 be two 
local trivializations of SCr163162 Let ~ :  ~ = U ~ ~rs~e(U) be a local section 

= (x, qJ(x)), O(x)e = q,(x). 
The homeomorphisms 4)~ and r have the forms 

r  = (~'s , ,e(~(x)),  ,~,~(,/,(x))) -= (x, ~,~(x)) 

O,~(x) = ~,~ o ~ l  O~(x ) = u ~ ( x )  (39) 

U z ~)oto 1~[31 ~_ Spin+(1, 3); ~b~, Ot3 6 N1,3E 

where E is the idempotent in the typical fiber corresponding to e (see 
Sections 2 and 3). 

The transformation law of an algebraic spinor field considered as an 
ideal section of ~g(~)  is as follows. Let ~b~: ~'21(U~)~ U~xR1,3 and 
~bt3: ~-Ta( Ut3 ) ~ Ut3 x R~,3 be two local trivializations of cr162 Let ~ :  2r 
U ~  ~2~(U) be a local section with ~ =  (x, O(x)), ~0(x)e = O(x). 

The homeomorphisms 4)~ and ~bo now have the forms 

~o (,~(x)) = (,~o(,~(x)), 4;~(~0(x))) = (x, q,~(x)) 
(40) 

~b~ (x) = q~o 4~10t~(x) --- uq~(x)u- ' -~ Ad ,  Or 

where u ~ Spin+O, 3) and 0~, Ot~ e N~,3E. 
Equations (39) and (40) show then that the transformation law of 

algebraic spinor fields depends explicitly on the assumption of whether they 
are sections of ~g(s162 or S~g(~) .  When ~ is a flat manifold, the Dirac 
and Maxwell equations in ~t'(Sf) or SCgg(s are equivalent. Note that term 
qA4) in (15) transforms under the homeomorphism th~ ~ 4) ~ ~ ( co rresponding 
to a Lorentz transformation) as qu(Ad~) = quAu-lu~b -= qA'~'.  This makes 
the equation covariant and gives the right transformation law for A 
(A~-~ uAu -~) if either ~b ~ see ~g(~)  or q~ ~ sec S~g(~) .  

5. CONCLUSIONS 

In this paper we showed how the Dirac and Maxwell equations can 
be written in the Clifford [ ~g(~) ]  and spin-Clifford [SC~/(~)] bundles over 
space-time. 

Our approach makes possible a direct comparison of the Dirac and 
Maxwell equations. We also obtained all presentations of the Maxwell fields 
as covariant spinor fields appearing in the literature by appropriate choice 
of the global idempotent fields in ~ / ( ~ )  or SC~g(~). The transformation 
laws for the Dirac and Maxwell fields represented as algebraic spinors fields 
is clarified. It is important to emphasize that when ~ is a flat manifold, so 
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that S~ / (~ )  exists, there is no way to decide on the use of ~E(~) or 
SCCE(~) for the description of the Dirac and Maxwell fields. For a general 
Lorentzian manifold, ~E(~) always exists, but the obvious generalization 
of the Dirac equation for an algebraic spinor field that is an ideal section 
of cr162 implies some obstructions for the manifold ~ (Graf, 1978). Also, 
for a general Lorentzian manifold the Dirac equation will be different in 
cCE(df) and S~E(~) due to the existence of the spin connection in Sqg/(~) 
(Blaine Lawson and Michelsohn, 1983). Thus, any solution to the real nature 
of Dirac's algebraic spinor field as a section of ~ ( ~ )  or ScCE(~) must be 
done in strong gravitational fields. This is a delicate problem, to which we 
will return in another paper. 

To end this paper, we observe that Oppenheimer (1931) and also 
Majorana (see Mignani et al., 1974) wrote the Maxwell equations using 
3 x 3 spinlike matrices, then putting the Maxwell equations in a Schr6dinger- 
like form. The relation between the 3 x 3 matrices used by Oppenheimer 
and Majorana and the Dirac matrices has been discussed by Gianneto 
(1985). 
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